
Static Analysis of Context Leaks in Android Applications

Flavio Toffalini, Jun Sun and Martín Ochoa
Singapore University of Technology and Design

flavio_toffalini@mymail.sutd.edu.sg

{sunjun,martin_ochoa}@sutd.edu.sg

ABSTRACT

Android native applications, written in Java and distributed in APK

format, are widely used in mobile devices. Their specific pattern of

use lets the operating system control the creation and destruction

of key resources, such as activities and services (contexts). Pro-

grammers are not supposed to interfere with such lifecycle events.

Otherwise contexts might be leaked, i.e. they will never be deallo-

cated from memory, or be deallocated too late, leading to memory

exhaustion and frozen applications. In practice, it is easy to write

incorrect code, which hinders garbage collection of contexts and

subsequently leads to context leakage.

In this work, we present a new static analysis method that finds

context leaks in Android code. We apply this analysis to APKs

translated into Java bytecode. We discuss the results of a large num-

ber of experiments with our analysis, which reveal context leaks

in many widely used applications from the Android marketplace.

This shows the practical usefulness of our technique and proves

its superiority w.r.t. the well-known Lint static analysis tool. We

then estimate the amount of memory saved by the collection of the

leaks found and explain, experimentally, where programmers often

go wrong and what the analysis is not yet able to find. Such lessons

could be later leveraged for the definition of a sound or more pow-

erful static analysis for Android leaks. This work can be considered

as a practical application of software analysis techniques to solve

practical problems.

KEYWORDS

Static analysis, memory leak, Android

ACM Reference Format:

Flavio Toffalini, Jun Sun and Martín Ochoa. 2018. Static Analysis of Context

Leaks in Android Applications. In ICSE-SEIP ’18: 40th International Confer-

ence on Software Engineering: Software Engineering in Practice Track, May

27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3183519.3183530

1 INTRODUCTION

Smartphones are standard technology nowadays. They have pow-

erful computing capabilities, access databases, connect to remote

servers, run games and heavy graphical operations. Their usage

patterns are different from those of traditional desktop computers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183530

In a smartphone, interaction screens, called activities in Android,

and background services are fired on demand and never explicitly

stopped by the user. Moreover, activities are not traditional win-

dows, since phones have no windowing system that lets the user

concurrently interact with multiple applications. Instead, activities

are singularly brought to the foreground and back, depending on

a given user’s needs. The operating system controls the life cy-

cle of activities and services and issues life cycle events to drive

them, including destruction events. Programmers usually listen

to such events to react accordingly. For instance, when an activ-

ity is brought to the background after another application is fired,

programmers can intercept that event to turn off the sound, stop

downloading data, or deallocate a large bitmap. When an activity

is destroyed, more extensive clean-up operations could be run, e.g.

so as to free up resources.

Android Apps thus require new design patterns which are differ-

ent from traditional Java applications. Android programmers have

often years of experience with Java, but are typically unaware of

such patterns, as well as the related problems and solutions.

Activities and services are instances of Android contexts. The

Android operating system controls the life cycle of contexts. Pro-

grammers are not supposed to interfere with the garbage collection

mechanism in Android. In particular, contexts should not be made

reachable from static fields or threads, that are roots of non-garbage

collectable data. Otherwise they will not be garbage collected at

the end of their life cycle. This rule however is easily violated in

practice, because contexts are often contained in other objects, such

as views (widgets) or fragments (portions of activities). For instance,

the context in a fragment cannot be garbage collected until the frag-

ment itself is garbage collected. This is furthered complicated by

hidden references. For instance, the implementation of inner classes

in Java entails that an inner class thread started from a context con-

tains a hidden reference to that context. As a result, the context

will never be garbage collected before the thread terminates.

These are examples of memory leaks, defined (page 89 of [15])

as memory allocated by the application that is not used anymore

but never identified by the garbage collector as memory that can be

reclaimed. This also includes memory allocated for too long a time,

essentially hogging memory. Such leaks are so widespread. They

even acclaimed Android applications crash or stop performing after

a few minutes of usage. The effort dedicated for fixing memory leak

problems is evident by the number of commits and issues dedicated

to these problems in open source projects such as OsmAnd [25],

Firefox for Android [24] and OwnCloud [28]. One particularly af-

fected example is probably the dating application Tinder, that stops

loading images of possible dates after 15 minutes of work [38].

In this work, we focus on context leaks in Android native appli-

cations written in Java, shipped in APK format containing Dalvik

215

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden F. Toffalini et al.

bytecode. We develop, implement and experiment with a static anal-

ysis method that identifies context leaks by analyzing the bytecode

of the APK. The method has been integrated in the industrial Julia

analyzer [20]. Our method works as follows. Firstly, APKs are con-

verted into Java bytecode automatically by using a custom version

of Dex2Jar [7]. Secondly, the Java bytecode is analyzed with Julia to

identify places where contexts might become reachable from static

fields or threads. Lastly, the potential leaks are analyzed systemati-

cally wrt. their severity. For instance, if the execution of a method

leaks a context, the issue is more dangerous if the method contains

cycles or performs blocking I/O, hence extending the duration of

the leak.

The actual solutions for coping with memory leaks in android

applications are based on dynamic and static analysis. The most

popular tool for dynamic analysis is Android Monitor [12], which

allows developers to identify activities leaked. Another popular

tool based on a dynamic approach is Canary [22], which is a library

for tracing the allocated objects and detecting memory leaks. Since

both approaches rely on dynamic analysis, developers need to have

a deep understanding of the activities within the application in

order to replicate and catch those errors. There are also tools based

on static analysis. The most popular ones for android are Lint [23]

and Infer [18]. However both tools only recognize syntactic code

patterns for leakage and do not perform a semantic analysis.

We conduct extensive experiments by applying our method to

500 third-party widely used APKs from the Android market. The

experiment results suggest that context leaks are potentially wide-

spread in real applications, with various severity degrees. In order

to rule out false-positives (due to the limitation of static analysis

techniques), we select 8 open source Android applications to manu-

ally verify the findings against their source code. We conclude that

our method is fast (with an average analysis time of 1 minute and a

maximum less than 10 minutes) and precise enough (with an over-

all accuracy of 71.5%). As a baseline comparison, we compare our

method to the Lint tool [23], which is currently used by Android

developers to find bugs through syntactical static analysis. The

experiment results show that our method performs better than Lint,

because our technique allows us to identify a larger number of cases

than only few syntactic patterns. Also, our results are more precise

because we exclude those objects which point only to Application-

Context. In general, our analysis is unsound. Due to the heuristics

we adopt for efficiency and avoiding false positives, there might

be leaks that we do not identify. In short, the experiment results

show that our technique is useful in practice. Lessons learned from

its use can be used to study, understand the problem and pave the

way to the development of a new commercial analyzer for Android

Apps.

The paper is organized as follows. Section 2 describes context

leaks in Android. Section 3 defines our static analysis method that

systematically finds such context leaks. Section 4 shows how we

classify the resulting warnings w.r.t. their severity. Section 5 re-

ports experiments with the analysis of real Android applications.

Section 6 reviews related work. Section 7 concludes.

2 CONTEXT LEAKS IN ANDROID

In this section, we present background on context leakage in An-

droid Apps. An object has a life cyclewhen its behavior and usability

window depend on invocation of methods on the object, explicitly

and clearly marked as state transitions, often non-revertible. For

instance, in Java, resources such as files or data streams end their

life cycle with a call to close(). After the call, they cannot be used

anymore and are expected to be eligible for garbage collection. Pro-

grammers are expected to explicitly call close() to help garbage

collection. Android extends this idea to contexts, with a much larger

set of life cycle methods (also known as callbacks). Moreover, the

Android operating system fires such methods asynchronously, i.e.,

the programmer does not call them directly. Some events perform

object bootstrap; somemark the end of life; in between, other events

notify user interaction or the availability of data. Events cannot be

rejected: one can only react in the appropriate callback.

If a context reaches its end of life, it is expected to be garbage

collectable. However, if the context is reachable from a non-garbage-

collectable root, it cannot be garbage collected and it is leaked.

In Java, non-garbage-collectable roots include running threads or

static fields. Hence, a context leak occurs in Android if and only if

a context has reached its life cycle end but is still reachable from a

running thread or from a static field. This includes the main and the

user interface threads.

The severity of a leak depends on its duration. Notable examples

of Android contexts are activities (screens interacting with the user)

and services (background tasks). Broadcast receivers (background

triggers) and fragments (portions of user interface) are not contexts

but contain a context. Hence they are context containers. Program-

mers often define other context containers. Also, context containers

can generate context leaks, since their context cannot be garbage

collected if the container itself is not garbage collectable.

In the following, let us focus on activities. When an activity is

invoked, Android pushes it on a stack and runs it in the foreground.

The activity previously on top loses focus and goes down in the

stack. The user interacts with the foreground activity only. Others

are kept in the stack until they are invoked and moved onto the

top again. This improves user experience by keeping activities in

memory without repeated destructions and creations. Activities

deep down in the stack are eligible for destruction. Figure 1 shows

the activities life cycle. At activity creation, its onCreate()method

is fired to initialize its state. The activity is now in memory, but

invisible. When it becomes visible, Android calls onStart(), which

may show pictures or start animations. When the Activity moves

to the foreground and starts interacting with the user, Android

calls onResume(), that typically initializes all resources that the

activity needs (e.g. network sockets or database connections). There

are closing methods like onDestroy(), onStop() and onPause().

After onDestroy(), the activity cannot be used anymore and is

expected to be eligible for garbage collection.

In the literature [15] (including programming forums), expert

Android programmers have shown many scenarios in which a leak

might occur in Android, which provides a basis to build a tool

that finds context leaks in Android code. Namely, the three typical

origins of a context leak in Android are: 1) a thread that reaches a

context; 2) a static field that reaches a context; 3) a system callback

216

Static Analysis of Context Leaks in Android Applications ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 1: The lifecycle of an Android activity.

public c l a s s Termina lB r i dge implements VDUDisplay {

AbsTranspor t t r a n s p o r t = . . . ;

private TerminalView pa r en t = null ;

protected void s t a r t Conn e c t i o n () {

Thread connec t i onThread = new Thread (

new Runnable () {

public void run () {

t r a n s p o r t . connec t () ;

}

}) ;

connec t i onThread . s t a r t () ;

}

public f ina l synchronized void parentChanged (

TerminalView pa r en t) {

th i s . p a r en t = pa r en t ;

}

}

Figure 2: A memory leak due to a running thread.

that reaches a context. Our tool is built to identify all these three

kinds of leaks. In the following, we report three concrete leaks that

our tool found in third-party Android Apps accordingly.

2.1 A Thread Reaches a Context

It is recommended [33] to delegate long tasks (such as network

or database operations) to background threads, to keep the main

application thread reactive. This preserves the responsiveness of

the application’s user interface. Android provides several thread-

related classes (e.g. Thread, Runnable, Handler, HandlerThread

and AsyncTask [15]). From now on, we call them thread-like classes.

Fig. 2 shows an example in which using a thread leads to a

leak. It is an example leak that our algorithm finds in OsmAnd,

a navigation application based on OpenStreetMap [26]. Method

startConnection() in Fig. 2 starts a thread, passing a Runnable

implemented as a non-static anonymous inner class. Hence, the lat-

ter has a synthetic hidden field that references the parent Terminal

Bridge, which cannot be garbage-collected before the thread stops.

A TerminalBridge holds a parent view that references an activ-

ity, as all views. Hence, this view and its activity are also kept in

memory until the thread terminates, together with the whole view

hierarchy and resources of the activity. It may take a while before

the thread terminates since it performs a network operation.

In order to avoid such a leak, the inner class should be named and

made static, if possible. Alternatively, the thread must be stopped in

the onPause() method of the leaked activity, to keep their lifespan

in sync.

2.2 A Static Field Reaches a Context

Static fields belong to a class and not to a specific instance. They

become reachable as soon as the class is loaded and they remain

so forever. Programmers tend to use static fields as global access

points for shared data, such as contexts. In particular, if a context

or context container is stored in a static field, possibly indirectly,

then it gets leaked. One way to solve this problem is to reset static

fields to null. However, this might happen too late, too early, or

worse, be simply forgotten.

Figure 3 shows an example of leak due to a callback, that our

algorithm finds in Telegram [36], a messaging application. Here, all

MapActivitys share a static mapContextMenu field, i.e. a container

of the last created MapActivity, set inside onCreate(). Since that

static field remains reachable at the end of the activity’s lifecycle,

the activity remains reachable as well, until a new MapActivity is

created. A solution here would be to implement onDestroy() to

call setMapActivity(null).

2.3 A System Callback Reaches a Context

Android has a set of managers to interact with the OS. For instance,

the location manager allows one to query the device location; the

sensor manager allows one to access sensor data, such as acceler-

ation; the audio manager allows one to intercept audio changes

through an interface. The OS provides a

Context.getSystemService() method that lazily creates such

managers. As usual in Java, lazy creation is achieved through static

fields, which comes with all problems shown in Sect. 2.2. Hence,

once created, managers are not garbage collected anymore. If call-

back objects get attached to managers, in order to listen to specific

events, they will remain allocated forever, or until they are explic-

itly detached. All data reachable from such callbacks, possibly a

context, will also remain allocated. This is typically the case if the

callback is implemented as a non-static inner class.

Figure 4 shows an example. A MediaController implements the
callback interface OnAudioFocusChangeListener, that requestAudioFocus()

passes to the audio manager. Hence the MediaController and its

217

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden F. Toffalini et al.

public c l a s s MapAct iv i ty extends OsmandAct ionBarAc t iv i ty implements . . . {

private s t a t i c MapContextMenu mapContextMenu = new MapContextMenu () ;

public void onCrea te (Bundle s a v e d I n s t a n c e S t a t e) {

mapContextMenu . s e tMapAc t i v i t y (th i s) ;

}

}

public c l a s s MapContextMenu extends MenuT i t l eCon t r o l l e r implements . . . {

private MapAct iv i ty mapAc t i v i t y ;

public void s e tMapAc t i v i t y (MapAct iv i ty mapAct iv i ty) {

th i s . mapAc t i v i t y = mapAc t i v i t y ;

}

}

Figure 3: A memory leak due to the store of an activity inside a static field.

public c l a s s Med i aCon t r o l l e r

implements OnAudioFocusChangeLis tener {

public boolean playAudio (. . .) {

N o t i f i c a t i o n s C o n t r o l l e r . g e t I n s t a n c e ()

. audioManager . r eque s tAud ioFocus (this , . . .) ;

}

private Cha tA c t i v i t y r a i s eCh a t = . . . ;

}

Figure 4: A memory leak due to callback

raiseChat activity cannot be garbage-collected anymore. A solu-

tion here is to implement the activity’s onDestroy() method in

such a way to stop the audio and unregister the callback.

3 A NEW STATIC ANALYSIS FOR CONTEXT

LEAK DETECTION

In the previous section, we show typical scenarios in which leaks

may occur in practice, which provides us a basis to develop a static

analysis algorithm that automatically detects such typical context

leaks in an Android application. We remark that although these

scenarios are not complete (i.e. there might be other subtle ways a

leak might occur), they are common enough so that they must be

properly handled. Namely, the algorithm aims to issue a warning

about a potential leak for every field f of the application such that
both the following conditions hold:

• f is a static field of some class, or is an instance (possibly
synthetic) field of a thread-like class or of a callback imple-

mentation;

• f has a static type assignable to Context or to a context

container.

These conditions are syntactical and hence easily implementable.

The precision of the algorithm can be improved by observing

that some contexts cannot induce a memory leak since, by def-

inition, they cannot be garbage collected before the application

stops. Namely, the running application itself is a context in An-

droid, accessible through the getApplicationContext() method

of each activity. That special context remains allocated in memory

until the application stops and can be safely stored in static fields or

made reachable from a thread, without inducing any leak. Hence,

if f can only hold an application context at runtime, then the algo-
rithm above need not issue a warning about a potential leak due to

f .
Below we provide further details about the algorithm. Namely,

we show how it is possible to identify context container classes

and how it is possible to know that a field can only contain an

application context.

3.1 Identification of Context Containers

A context container is an object that can reach a context, but not the

context itself. Examples are objects of class android.view.View.

The problem is now to identify all classes that might have an in-

stance which is a context container.

A simple algorithm first selects the set I of classes that define a
field of type Context, or supertype, or subtype. Then it expands I
for all classes C that define a field whose type is in I , until fixpoint.
This algorithm is sound but, in practice, it is extremely imprecise

since it ends up classifying almost all classes as potential context

containers. This is due to fields of type Object, used for instance

in collection classes, that can potentially reach every other class.

Hence, we have decided to adopt the following two heuristics

instead of the above-mentioned naive algorithm:

Heuristic over the constructors It first selects the set I of classes
with a constructor that accepts a parameter of type Context

or subtype. Then it expands I for all classesC such thatC has

a constructor with a parameter of type in I , until fixpoint.
For instance, this heuristic spots views and fragments as

context containers. Figure 5 depicts an example where this

heuristic is more suitable. Compared to existing approaches

adopted by popular tools like Lint, our heuristic is empiri-

cally shown to be at least as precise as Lint’s one since all

warnings raised by our method are also detected by Lint.

Note that Lint adopts an exploration strategy which scans

all fields of the classes,

Heuristic over the fields It first selects the set I of classes that
implement an interface and have a field of type Context

or subtype. Then it expands I for all classes C such that C
has an instance field whose type is in I , until fixpoint. This
heuristic is similar to the sound algorithm, but only considers

subtypes and classes that implement an interface, such as

callbacks. Indeed, this heuristic spots implementations of

callbacks or listeners. Figure 6 depicts an example where it

is more convenient analyzing fields than constructors.

218

Static Analysis of Context Leaks in Android Applications ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

public c l a s s MainAc t i v i t y extends AppCompatAct iv i ty {

private ArrayAdapter < S t r i ng > mArrayAdapter ;

@Override

protected void onCrea te (Bundle s a v e d I n s t a n c e S t a t e) {

super . onCrea te (s a v e d I n s t a n c e S t a t e) ;

s e tConten tV iew (R . l a y ou t . a c t i v i t y _ma i n) ;

mArrayAdapter = new ArrayAdapter < S t r i ng >(this , . . .) ;

}

}

Figure 5: Example of code suitable for heuristic by construc-

tors

3.2 Identification of Application Contexts

Here we show how it is possible to know if a field can only contain

an application context at runtime. This information can also be used

to improve the heuristics shown in Sect. 3.1, by considering only

constructors whose parameter is not necessarily an application

context, or by considering only those fields whose values are not

necessarily an application context.

We use a semantic approach that finds all producers of a value,

based on the existing tool Julia, which a semantic Java analyzer that

abstracts Android life-cycles and automatically recognizes entry

points in Android applications [31, 32]. Note that our approach has

been integrated into Julia. Julia also provides a data-flow algorithm

that systematically yields the bytecode instructions that produce a

value at a given program point. It is a traditional backwards data-

flow reaching definitions analysis [1] that follows the flow of data

across bytecode instructions, as long as it remains confined to the

operand stack and local variables. If all producers of a value v are

null or the return value of method getApplicationContext()

or a subclass of Application, then v can only be an application

context. Section 5 measures how much the availability of this extra

information improves the precision of the leak analysis algorithm.

4 WARNING CLASSIFICATION

The algorithm in Section 3 finds fields that might induce a context

leak. For each such field, the algorithm issues a warning. But warn-

ings have different severity, depending on the type of the leaked

object (e.g. an activity, a view. . .) and the duration of the leak. In

this section, we show how to classify warnings w.r.t. these two

dimensions.

Section 2 shows that a leak occurs when a context or context

container is reachable from a static field f or from an instance field

f of a thread-like class or callback. Hence, it is possible to classify
a leak w.r.t. the class of the leaked object, by distinguishing leaks

w.r.t. the static type of f . This classification captures an aspect of
the danger of a leak: objects with lifecycle are in general larger

than views; ImageViews are larger than a View since they contain

a bitmap.

A leak can also be classified w.r.t. its duration: the longer, the

more dangerous. Leaks due to contexts reachable from static fields

or callbacks last forever, since the field is never garbage collected.

Leaks due to thread-like classes last as long as the operations per-

formed by the methodm that implements the body of the thread (or

by one of the methods thatm invokes, possibly indirectly). Namely,

we can classify the duration of m with the following grades, in

increasing order of danger:

• linear methods contain no loops;

• library interacting methods call library functions;

• looping methods contain loops or recursion;

• file system methods call file system functions;

• networking methods call networking functions.

A method might fall in more classes, in which case the highest

grade is taken. We have implemented an algorithm that computes

the grade д(m) of each methodm in the program. Initially, it sets

д(m) to the grade resulting from the code ofm, without looking at
the methods thatm invokes. Then, the grade is iteratively updated

by setting д(m) to the highest grade between д(m) itself and that of
the methods thatm calls inside its body. This process is repeated

until a fixpoint is reached.

5 EXPERIMENTS

Our method has been coded and integrated in the Julia static an-

alyzer for Java bytecode [20], which is a rich framework for the

development of new analyses. This is briefly how Julia works. Since

Android applications are packaged into Dalvik bytecode [6] (dex),

the tool Dex2Jar [7] has been used to translate Dalvik into Java

bytecode. We used a modified version of that tool, in order to trans-

late also the debug information, needed to recover the source line

numbers of the leaks. In the following, we report experiments with

the implementation of the leak analysis. All experiments were per-

formed on a Windows 7 64bit machine with 16GB of RAM and an

Intel i5 processor at 3.30MHz.

The experiments are conducted to answer the following research

questions. Firstly, we would like to evaluate whether our target

leaks are common in Android applications and whether our method

scalable and efficient to identify them in real-world Android ap-

plications (RQ1). Secondly, because our method is based on static

analysis, which as we all understand sometimes suffers from the

issue of false positives, we would like to evaluate what is the like-

lihood of our method reporting false positives (RQ2). Lastly, we

would like to evaluate whether the leaks in practice are severe

enough so that our effort is justified (RQ3).

RQ1. In order to answer RQ1, we systematically downloaded 500

APKs from Google Play [13], and applied our method to analyze

them. The applications were chosen by ordering them according to

the number of downloads.

For all APKs, each analysis never lasted more than 10 minutes

with an average analysis time of 1 minute and a standard deviation

of 52, this gap depends on the nature of the APKs. Furthermore,

each analysis is run both with and without the optimization that

lets application contexts be safely leaked (Section 3.2). This idea

is to evaluate how much this optimization actually improves the

precision of the results.

Figure 7 summarizes the experiment results. We put apps in

buckets w.r.t. the number of warnings that the analysis issues. The

figure shows that the analysis issues no more than 30 warnings

for 336 apps. Without the optimization in Section 3.2 about appli-

cation contexts, the same number reduces to 331, i.e. a few more

warnings are generated per application. This suggests that leaks

are widespread in apps currently downloaded by Android users.

219

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden F. Toffalini et al.

public c l a s s MainAc t i v i t y extends AppCompatAct iv i ty {

protected void onCrea te (Bundle s a v e d I n s t a n c e S t a t e) {

super . onCrea te (s a v e d I n s t a n c e S t a t e) ;

s e tConten tV iew (R . l a y ou t . a c t i v i t y _ma i n) ;

Wif iManager wi f iMgr = (WifiManager) th i s . g e t S y s t emSe r v i c e (Contex t . WIFI_SERVICE) ;

wi f iMgr . s t a r tWps (. . , new MyWif iCa l lback ()) ;

}

public c l a s s MyWif iCa l lback extends WifiManager . WpsCal lback {

/ ∗ . . . ∗ /

}

}

Figure 6: Example of code suitable for heuristic by fields

Figure 7: Number of warnings per application.

LoC version

webTube [39] 163854 741620d8

aSQLiteManager [3] 127186 29606afb

ConnectBot [5] 204813 fa590d1a

OwnCloud [29] 218542 a82bcce2

Kiwix [21] 179855 559eaee6

Firefox [10] 261601 a4071341

OsmAnd [27] 365205 e9486ab1

Telegram [37] 311004 cc7f3116

Figure 8: The 8 open source Android applications that we

have analyzed

Furthermore, we observe that there are a large number of apps

which have a large number of warnings and a large number of apps

which have few warnings. This pattern can be explained by the

nature of Google Play, on one hand, the most popular applications

receive more attention by the developers because they are services

provided by companies. On the other hand, Android market is also

full of applications which can be considered attempts. They were

uploaded but they do not receive many attentions by their devel-

opers. The quality of Google Play’s applications is often matter of

discussion by technical magazines [14].

RQ2. The previous experiment shows that our method can find

many leaks in real-world apps. The question is then: how many of

them are actual leaks and how many of them are false positives?

Answering this question requires us to investigate the source code

of these APKs. Unfortunately, the source code of these APKs is not

available. We thus instead analyze 8 open source apps in order to

answer RQ2, with the hope that the results drawn from these 8 apps

are representative of real-world apps in general. According to the

nature of memory leaks discuss in Section 2, we opted for those apps

which are related to asynchronous operations with the file system

or network activities, or else they provide a multimedia interaction.

Figure 8 shows the details of the 8 apps, i.e. their number of lines

of source code (LoC) and commit id (version).

Figure 9 shows the experiment results. For a baseline comparison,

we present the results obtained using the popular Lint tool as well.

Lint is the standard static analyzer integrated in Android Studio,

it recognizes syntactical patterns in the source code that might

bring to memory leaks. The main difference between Lint and our

approach leans in our semantic analysis. In Lint approach, it might

happen that even if a pointer refers only to ApplicationContext, it is

still reported as dangerous. Lint does not inspect the possible values

of that field. Also, Lint does not consider dangerous those pointers

which might be cast to context, for instance, collections or Objects

fields. On the other hand, our approach analyses all producers of a

field, and so we can filter out those pointers which refer to only safe

contexts (i.e. ApplicationContext). In our experiment we split warn-

ings w.r.t. the origin of the leak: threads (Section 2.1), static fields

(Section 2.2) or callbacks (Section 2.3). Experiments are performed

220

Static Analysis of Context Leaks in Android Applications ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Julia Lint

threads static callbacks threads static

true false true false true false true false true false

webTube 0 0(0) 1 0 0 0(0) 0 0(0) 1 0

aSQLiteManager 7 0(0) 1 0 0 1(0) 0 0(0) 1 0

ConnectBot 29 0(0) 0 3 0 3(0) 1 0(0) 0 1

OwnCloud 24 31(19) 0 6 1 2(0) 2 0(0) 0 1

Kiwix 7 0(0) 1 0 1 2(1) 1 0(0) 1 0

Firefox 213 70(12) 16 42 4 26(24) 0 0(0) 6 13

OsmAnd 260 29(2) 13 11 4 13(0) 2 0(0) 0 0

Telegram 237 9(0) 6 12 1 9(5) 0 0(0) 5 0

Figure 9: True and false positives for the analysis of 8 open source Android applications. Warnings are distinguished w.r.t. the

categories identified in Sections 2.1, 2.2 and 2.3.

with Julia and with Lint. For the latter, we have considered checkers

StaticFieldLeak. Note that Lint has no checkers for leaks through

callbacks nor through thread-like classes other than Handler. It

does not perform any analysis to assess that a leak is benign since

it involves the application context, as we do instead (Section 3.2).

For each category of leak, Figure 9 counts true and false alarms

and reports, under parentheses, the number of false alarms due to

the fact that a thread is stopped or a callback is unregistered as soon

as an object terminates its life cycle, so that it cannot be leaked.

This is a typical Android programming pattern, that our algorithm

does not handle. According to Figure 9, our algorithm performs

better with memory leak warnings related to threads (81.95%),

while static fields warnings result less precise (33.93%). The worst

performances are presented for callback’s memory leak (11.7%).

For instance, for Firefox our algorithm reports 213 true positives

and 70 false positives about objects leaked through threads; 12 are

due to threads stopped when an object ends its life cycle. Figure 9

clearly shows the strict superiority of our technique w.r.t. Lint, i.e.,

we find many more true positives and also leaks due to callbacks

implementations. Furthermore, we find all true positives found by

Lint.

We report below further examples of context leaks that our

algorithm finds in some notable apps that we have analyzed along

with some example of false positive, these latters help to understand

the limitation of our approach.

Example of false positive. The more recurrent cause of false pos-

itive in our approach depends by a correct handling of the ob-

jects within the applications. In this sense, Figure 10 shows an

example of possible leak through thread in OsmAnd. In this case

the static field mThread is a thread instance of a inner class of

ContributionVersionActivity. Therefore that thread might leak

its own outer class. However, the activity handles the object prop-

erly since it starts mThread in onCreate() method, and also stops

the thread in onDestroy() method. We plan to deepen these cases

in a future release of our algorithm.

Context Leaks Found in the Firefox App. Class BrowserApp, Fig-

ure 11 extends Activity (and not Application, as its name might

suggest) and the anonymous implementation of Runnable refer-

ences that activity and hinders its garbage collection also after its

public c l a s s Con t r i b u t i o nV e r s i o nA c t i v i t y

extends OsmandL i s tAc t i v i t y {

private s t a t i c Con t r i b u t i o nVe r s i o nAc t i v i t yTh r e a d mThread

= new Con t r i b u t i o nVe r s i o nAc t i v i t yTh r e a d () ;

@Override

protected void onCrea te (Bundle s a v e d S t a t e) {

super . onCrea te (s a v e d S t a t e) ;

/ ∗ . . . ∗ /

/ / t h i s l i n e s t a r t s t h e mThread f i e l d above

s t a r t Th r e a dOpe r a t i o n (/ ∗ . . . ∗ /) ;

}

@Override

protected void onDestroy () {

super . onDestroy () ;

/ / t h i s l i n e s t o p s t h e mThread f i e l d above

mThread . s e t A c t i v i t y (null) ;

/ ∗ . . . ∗ /

}

}

Figure 10: Example of false positive in OsmAnd

public c l a s s BrowserApp extends GeckoApp . . . {

@Override

public void onCrea te (Bundle s a v e d I n s t a n c e S t a t e) {

P e rm i s s i on s . from (th i s) . w i t hPe rm i s s i on s (Man i f e s t

. p e rm i s s i on .WRITE_EXTERNAL_STORAGE)

. doNotPrompt ()

. a n dF a l l b a c k (new Runnable () {

@Override

public void run () {

showUpda te rPermis s ionSnackbar () ;

}

})

. run () ;

}

}

Figure 11: Example of memory leak in Firefox App.

destruction. This is particularly bad since the implementation of

showUpdaterPermissionSnackbar() (not shown below) performs

networking:

Another example of context leak in the Firefox app is depicted in

Figure 12. Class HomeFragment is a context container. The anony-

mous inner Runnable class leaks that context until the execution of

221

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden F. Toffalini et al.

public c l a s s BrowserSearch extends HomeFragment . . . {

private void s e t S u g g e s t i o n s En a b l e d (

f ina l boolean enab l ed) {

/ ∗ . . . ∗ /

/ / Make s u g g e s t i o n s appea r immed i a t e l y

/ / a f t e r t h e u s e r o p t s i n

Th r e a dU t i l s . postToBackgroundThread (

new Runnable () {

@Override

public void run () {

S u g g e s t C l i e n t c l i e n t = mSugges tC l i en t ;

i f (c l i e n t != null)

c l i e n t . query (mSearchTerm) ;

}

}

) ;

}

}

public c l a s s S u g g e s t C l i e n t {

public Ar rayL i s t < S t r i ng > query (S t r i n g query) {

/ ∗ . . . ∗ /

i f (! Ne tworkUt i l s . i sConnec t ed (mContext) &&

mCheckNetwork) {

Log . i (LOGTAG, " Not ␣ connec ted ␣ t o ␣ network ") ;

return s u g g e s t i o n s ;

}

S t r i n g encoded =

URLEncoder . encode (query , "UTF−8 ") ;

S t r i n g s u gg e s tU r i = mSuggestTemplate . r e p l a c e (

" __searchTerms__ " , encoded) ;

URL u r l = new URL (s u gg e s tU r i) ;

S t r i n g j s on = null ;

HttpURLConnect ion u r lConnec t i on = null ;

I npu tS t r eam in = null ;

try {

u r lConnec t i on =

(HttpURLConnect ion) u r l . openConnect ion () ;

u r lConnec t i on . se tConnec tT imeout (mTimeout) ;

u r lConnec t i on . s e t R e qu e s t P r o p e r t y (

" User−Agent " , USER_AGENT) ;

i n = new Bu f f e r e d I npu t S t r e am (

u r lConnec t i on . g e t I npu t S t r e am ()) ;

j s on = conve r t S t r e amToS t r i ng (in) ;

}

f ina l l y { / ∗ c l o s e c o n n e c t i o n (om i t t e d) ∗ / }

/ ∗ . . . ∗ /

}

}

Figure 12: Example of memory leak in Firefox App.

its run()method completes. But that execution actually performs a

potentially long network connection and string conversion, inside

class SuggestClient:

Context Leak Found in the Telegram App. Class GcmInstance

IDListenerService (Figure 13) extends Service and the anony-

mous implementation of Runnable hinders its garbage collection

also after its destruction. Also in this case, it can be verified that

postInitApplication() performs a check on the Internet con-

nection, which might take a while. This increases the severity of

the warning:

RQ3. In order to answer RQ3, we estimate the severity of each

leak according to the size of the leak and the duration of the leak.

For the leaks due to threads, it is possible to estimate the duration

of the run() method of the thread. For all leaks, it is also possible

public c l a s s GcmIn s t a n c e IDL i s t e n e r S e r v i c e

extends I n s t a n c e I D L i s t e n e r S e r v i c e {

@Override

public void onTokenRefresh () {

A n d r o i d U t i l i t i e s . runOnUIThread (new Runnable () {

@Override

public void run () {

App l i c a t i o nLo ad e r . p o s t I n i t A p p l i c a t i o n () ;

I n t e n t i n t e n t = new I n t e n t (App l i c a t i o nLoad e r .

a p p l i c a t i o nCon t e x t ,

G cmRe g i s t r a t i o n I n t e n t S e r v i c e . c l a s s) ;

s t a r t S e r v i c e (i n t e n t) ;

}

}) ;

}

}

public c l a s s App l i c a t i o nLo ad e r extends App l i c a t i o n {

public s t a t i c void p o s t I n i t A p p l i c a t i o n () {

/ ∗ . . . ∗ /

Connect ionsManager . g e t I n s t a n c e () . i n i t (Bu i l dVa r s . BUILD_VERSION ,

TLRPC . LAYER , Bu i l dVa r s . APP_ID , dev iceModel , sys temVers ion ,

appVers ion , langCode , con f i gPa th , F i l e L o g . getNetworkLogPath

() ,

Use rConf ig . g e t C l i e n t U s e r I d ()) ;

/ ∗ . . . ∗ /

}

}

public c l a s s Connect ionsManager {

public void i n i t (/ ∗ . . . ∗ /) {

n a t i v e _ i n i t (/ ∗ . . . ∗ /) ;

checkConnec t ion () ; / / THIS PERFORMS AN INTERNET CONNECTION

/ ∗ . . . ∗ /

}

}

Figure 13: Example of memory leak in Telegram

Sum Min Max Mean SD

webTube 3 3 3 3 NA

aSQLiteManager 10 1 2 1 <1

ConnectBot 87 <1 9 3 3

OwnCloud 97 <1 37 4 8

Kiwix 501 <1 156 56 76

Firefox 668 <1 50 3 8

Figure 14: Statistics about memory saving in open source

projects, measured in KB. SD stands for standard deviation.

WebTube has only one true positive warning and thus no

standard deviation

to identify the kind of object that is leaked and estimate the amount

of memory loose. This information is important for evaluating the

severity of the leak (its duration and the size of memory that is

leaked) and for collecting statistics about the most frequent leak

scenarios. We did this during the analysis of the 500 APKs, by per-

forming a further analysis of the warning found in the open-source

projects. Figure 15 classifies the run() methods (or equivalent)

of the threads at the origin of a leak by means of the heuristic

of increasing duration and danger from Section 4. Figure 16 clas-

sifies instead the objects potentially involved in leaks. The most

frequently leaked objects are activities (23.21%), context containers

created by the programmer (22.41%) or from the standard Android

222

Static Analysis of Context Leaks in Android Applications ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 15: Classification of the run()method of the threads
at the origin of leaks.

library (16.31%).We distinguish between View and ImageView since

the latter contains a bitmap and its leakage is consequently more

severe.

We then precisely estimate the amount of memory involved

by a memory leak based on the open-source projects. That is, we

analyzed the true positive warnings detected in the open-source

projects and estimate the size of thememory leak with the following

steps.

(1) we debugged the project;

(2) we triggered the warning after inspecting the code;

(3) we dumped the memory by using Android Monitor tool [2].

From the memory dump, we measured the retained size for each

object involved in the memory leak. We considered retained size

because it is the amount of memory that might be collected by the

garbage collector if that warning was solved [34]. The results of

this experiment are shown in Figure 14, where we present the sum,

minimum, maximum and the average of memory lost for each open-

source project. We did not manage to debug OsaAnd and Telegram

because of technical issues with those projects and Android Studio.

Based on the results, we observe that on average each warning

solved can release around 2KB, except for Kiwix project which has

more the 50KB on average. Also, from this experiment, we can state

that in some case the minimum amount of memory leaked can be

few byes, for instance for Firefox and ConnectBot. Finally, the sum

column shows that solving all warnings could result in memory

saving of more than 100KB for Kiwix, Firefox and OwnCloud.

6 RELATEDWORK

Our technique is static, while most techniques for finding leaks

are dynamic leak detectors. Static analysis has been applied to

resource leaks. A notable example is [16], that considers Android

components with lifecycle as well. In the case of context leaks,

only Lint applied static analysis in the past. Our experiments have

shown the superiority of our technique w.r.t. Lint. Blackshear et

al. [4] proposed a solution based on symbolic for finding leaks in

heap, their work is not comparable with ours because they aim to

detect different kind of leaked objects than context-leak ones.

Google has best practices for leak prevention [11] and tools to

analyze and debug memory at runtime [12]. Eclipse MAT [8] helps

analyze memory at runtime. Leak Canary [22] inserts memory leak

Type of leaked object # %

BroadcastReceiver 223 0.47%

Fragment 469 0.98%

Adapter 686 1.44%

ImageView 709 1.49%

Dialog 983 2.06%

Service 1100 2.31%

Context 1762 3.69%

Collections 1799 3.77%

Other interfaces 3574 7.49%

View 6851 14.37%

Android context container 7778 16.31%

Custom context container 10689 22.41%

Activity 11068 23.21%

Total: 47691

Figure 16: Type of objects involved in context leaks.

detection code in applications, that triggers at runtime. Aspect-

oriented programming can spot memory leaks at runtime [19],

but that work has not been extended from Java to Android yet.

Testing has been used to find leaks [40]. They identify a sequence

of dangerous user actions, that often lead to a leak, and replay

them automatically to simulate dangerous behaviors. Testing has

been applied to some common memory leak patterns [35], similar

to those in Section 2. Testing can also find where the garbage

collector cannot correctly deallocate some resource [30], a problem

somehow similar to context leaks. Both [41] and [17] build unit

tests that find memory leaks by stressing the application, raising

an exception at runtime. In [9], the author analyses how callbacks

are register/deregister in a framework. In particular, he suggests

some simple static analysis which helps the developer to identity

callbacks not deregistered properly. This solution is substantially

different than our because it does not consider Android framework

issues, i.e. , it does not consider contexts and their origins.

7 CONCLUSION

This article proposes a static leak analysis that is able to find con-

text leaks in Android applications. The algorithm proposed is not

sound, but it may give insights into why such leaks occur (threads,

static fields, callbacks implementations) and how frequent we can

expect this to happen in practice. Moreover, manual analysis of the

analysis results allows us to gather lessons about possible, future

improvements to the analysis and gives a direction for this, related

to the identification of contexts that are made unreachable at the

end of the lifecycle of an object (Fig. 9). Finally, we have analyzed

the duration of the leaks (Fig. 15) and the typical kinds of the leaked

object (Fig. 16). Also, these results are invaluable information for

the future definition of a more precise and sound static analysis.

ACKNOWLEDGEMENTS

We thank Fausto Spoto (University of Verona), Ètienne Payet (Uni-

versitè de La Rèunion) and the entire team of Julia S.r.l. for their

collaboration. Their help was fundamental to achieve the results

presented in this paper.

223

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden F. Toffalini et al.

REFERENCES
[1] R. Aho, A. V. Sethi and J. D. Ullman. Compilers, Principles Techniques and Tools.

Addison Wesley Publishing Company, 1986.
[2] https://developer.android.com/studio/profile/android-monitor.html.
[3] https://sourceforge.net/p/asqlitemanager/code.
[4] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher: Precise

refutations for heap reachability. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13,
pages 275–286, New York, NY, USA, 2013. ACM.

[5] https://github.com/connectbot/connectbot.git.
[6] https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html.
[7] https://github.com/pxb1988/dex2jar.
[8] http://www.eclipse.org/mat/.
[9] George Fairbanks. Design Fragments. PhD thesis, School of Computer Science

Carnegie Mellon University Pittsburgh, 2007.
[10] https://hg.mozilla.org/mozilla-central.
[11] http://developer.android.com/tools/debugging/debugging-memory.html.
[12] http://developer.android.com/tools/performance/memory-monitor/index.html.
[13] https://play.google.com.
[14] http://www.netimperative.com/2017/08/google-play-starts-downranking-poor-quality-apps/.
[15] A. Göransson. Efficient Android Threading. O’Reilly Media, June 2014.
[16] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang. Characterizing and Detect-

ing Resource Leaks in Android Applications. In Proc. of Automated Software
Engineering (ASE), pages 389–398, Nov 2013.

[17] L. Hong, J. Qian, and J. Cui. Automated Unit-level Testing of Java Memory Leaks.
Computer Modelling and New Technologies, 18(11), 2014.

[18] http://fbinfer.com/.
[19] M. Jain and D. Gopalani. Memory Leakage Testing using Aspects. In Proc. of

Applied and Theoretical Computing and Communication Technology (iCATccT),
pages 436–440, Oct 2015.

[20] http://www.juliasoft.com.
[21] https://github.com/kiwix/kiwix.git.
[22] https://github.com/square/leakcanary/.
[23] http://tools.android.com/tips/lint.
[24] Mozilla. Commits related to memory leak in mozilla firefox for android, October

2016. https://hg.mozilla.org/mozilla-central/log?rev=memory+leak.
[25] Open Street Map. Issues related to memory leak in osmand, October

2017. https://github.com/osmandapp/Osmand/issues?utf8=%E2%9C%93&q=
memory%20leak%20.

[26] http://osmand.net/.
[27] https://github.com/osmandapp/Osmand.git.
[28] OwnCloud. Issues related to memory leak in owncloud android, Octo-

ber 2017. https://github.com/owncloud/android/issues?utf8=%E2%9C%93&q=
memory%20leak.

[29] https://github.com/owncloud/android.
[30] J. Park and B. Choi. Automated Memory Leakage Detection in Android-Based

Systems. International Journal of Control and Automation, 5(2):35–42, 2012.
[31] ÃĽ. Payet and F. Spoto. Static analysis of Android programs. Information and

Software Technology, 54(11):1192 – 1201, 2012.
[32] Étienne Payet and Fausto Spoto. Static Analysis of Android Programs, pages

439–445. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[33] https://developer.android.com/guide/components/processes-and-threads.html.
[34] https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.

diagnostics.memory.analyzer.doc/shallowretainedheap.html.
[35] H. Shahriar, S. North, and E. Mawangi. Testing of Memory Leak in Android

Applications. In Proc. of High-Assurance Systems Engineering (HASE), pages
176–183, Jan 2014.

[36] https://telegram.org/.
[37] https://github.com/DrKLO/Telegram.git.
[38] https://m.reddit.com/r/Tinder/comments/42bfa8/i_swear_to_god_tinder_is_

doing_this_shit_on/, 2016.
[39] https://github.com/martykan/webTube.git.
[40] D. Yan, S. Yang, and A. Rountev. Systematic Testing for Resource Leaks in

Android Applications. In Proc. of Software Reliability Engineering (ISSRE), pages
411–420, Nov 2013.

[41] H. Zhang, H. Wu, and A. Rountev. Automated Test Generation for Detection
of Leaks in Android Applications. In Proc. of Automation of Software Test (AST),
pages 64–70. ACM, 2016.

224

